UTSI Preprint, March 2005

Computation of High Reynolds Number Flows Using
Vorticity Confinement: |. Formulation

John Steinhoff Nicholas LynA and Lesong Warig

Abstract

A computational method is described that has bessigded to capture thin vortical regions in highyfeéds
number incompressible flows. The principal objetof the method—Vorticity Confinement (VC)—is to tae
the essentiafeatures of these small-scale vortical structares model them with a very efficient difference hoat
directly on an Eulerian computational grid. Essentiallg $mall scales are modeledralinear solitary wavethat
“live” on the lattice indefinitely. The method alle convecting structures to be modeled over asae® grid cells
with no numerical spreading as they convect indtefin over long distances, with no special logiguied for
merging or reconnection. It also serves as a e#igient substitute for RANS models of attached @eparating
boundary layers and vortex sheets and filamentsth€éiy the method easily allows boundaries withskip-
conditions to be treated as “immersed” surfacamiform, non-conforming grids, with no requiremefas complex
logic involving “cut” cells.

In this paper a description of the basic VC metisogiven. This is more comprehensive than has peeviously
available. There are close analogies between VC weltknown shock and contact discontinuity capigri
methodologies. These are discussed to explain #isec hdeas behind VC, since it is somewhat differtan
conventional CFD methods. Some of the possilslitiat VC offers towards very efficient computatafrturbulent
flows in the LES approximations are explored. Ehsem from the ability of VC to act as a negatlissipation at
scales just above a grid cell, but that saturatdsdaes not lead to divergence. This feature allows

1. approximate cancellation of numerical diffusi@n, that more complex, high order-low dissipatichesnes
can be avoided. Small-scale vortical structurethatgrid cell level can then be captured, resultimgery
efficient use of the available degrees of freedonthe grid.

2. approximate treatment of backscatter. This ve®lthe addition of (modeled) subgrid kinetic egeig the
flow in a natural way, without requiring stochadticcing, and which restores some of the instaédithat are
removed by the (implicit) filtering.

Although used for a number of years for completacited and separating flows, and trailing vortidissyse as an

LES method is relatively recent. In Ref. [0], soiméal LES results are presented.

1 Introduction

We describe the Vorticity Confinement (VC) methant #fficiently treating thin vortical structures imgh
Reynolds number incompressible flow. This forms thesis of the VC-based LES, or “WCLES” method for
turbulent flow simulation, which is the subject this paper. Earlier applications of VC have incldidmpturing
attached and separating boundary layers and coangecortex sheets and filaments. These have sease@
substitute for much more expensive RANS schemas,aae described in the literature [15]. This stirmyolves
turbulent flow simulations, where VC is used in tmedeling and computation of the thin vortex filangeand
sheets, which we assume to be the smallest ressbzdes.

The principal objective of VC is to capture thesentialfeatures of these small-scale vortical structur&sy.
essential features, we mean vortex filaments tlegt convect over long distances with no significspriteading and
can change topology and merge or reconnect andtrsorb large-scale energy by stretching; and vatteets that
can become unstable and break up into filamentsush, it can be thought of as “physical structumeserving”.
This is affected with a very efficient differencetinoddirectly on a (fixed Eulerian) computational grid. It igaed
that this is more effective than first formulatiagnodel partial differential equation (pde) forgbesmall scales and
then making a discrete approximation, since itvedlahin vortical regions to be implicitly modeleshread over as
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few as 1-3 grid cells, and convected over arblirddng distances with no effects due to numerigabr. The
irrotational part of the flow, as well as any largeeale vortical structures, can then be solvedh witfficient
resolution with conventional, discretized partiaffetential equations (Euler equations). For thesgions, the
method can reduce to conventional computational fliynamics (CFD).

Besides allowing simple coarse grids to be usadpntathod can be used effectively with low ordeetiamd space
discretization of the basic equations, since ithilates artificial spreading due to numerical diftun for the small
vortical scales. This greatly simplifies boundaoypditions and reduces computational time further.

The purposes of this paper are to explain the brasicnale behind using VC, to describe the maaagibehind
VC in more detail than has been available in previpapers, and finally, to explore the possibditirat it offers
towards more efficient LES computations of turbtildows. Some initial LES results are presenteBéf. [0].

1.1 Basic Rationale

First, our basic overall objectives for turtntllow simulations will be described. The goalasfy LES method
is, of course, to solve for the larger scales abulent flow and obtain a solution of a filtered, @nvolved flow
field with the small scales filtered out. There dawo basic concepts in an LES method that we assonbe
important and which serve as the rationale forgsi@:

First, for small scale vortices, VC allows us tduee numerical dissipation so that it minimizes éffect on the
numerical solution, down to scales of a small nunb®) of grid cells sizes (h), so that other ngasbales - as
small as ~3-4h, are not significantly contaminatadhis way, VC allows us to maximize h for a givesolution, or
effective filter width. This is important becauseegy factor of 2 increase in h leads to a factodéfdecrease in
computing time. For general small vortical scalegs not possible to avoid numerical error ovend convection
times, even if expensive high order conventionaDGlehemes are used. However, if the small scaldisei field
consist of vortex sheets and filaments, as is aissumed, this is easily accomplished — with VC.

Second, even in the limit of vanishing viscositystj eliminating numerical errors, such as diffusiamd
accurately solving the Euler equations for theeffdd field is not sufficient. A filtered field cqmated in this way
would not experience as strong instabilities asuhfiitered field would. This reduction of instétiés can have
strong consequences, even in 2-D flows. Thus, timssabilities must be restored by a destabilizemgn, which can
be accomplished with VC. The basic idea will bealdatively) discussed below for Kelvin-HelmholtkH) flows,
as an example. This issue essentially involvesaqapiating backscatter.

Kelvin Helmholtz Instability

Consider a flat 2-D contact discontinuity (vortédsest) along the x axis, with velocity u = +1 abewel —1 below,

and v=0. The kinetic energy density

e=¢f/2=10/2=12
both above and below the sheet. Now considetadil field (Fig. 1); e will have the form in Fig with the dashed
curve representing the unfiltered field and thédsdhe filtered field. The area between the saldl dashed curves
represents sub-grid scale, or “latent” energy ithat present in the filtered field. This energppusid be considered
since it can be added to the filtered field ass/adlees to energize the KH instabilities that haeed damped by the
filtering.

The unfiltered sheet will, of course, be unstabte an imposed perturbation, which will initially gvo
exponentially and then tend to saturate (by thetsiadling up). The physical realization of thisthe set of small,
rolling up vortex sheets sketched in Fig. 3. THeSLgoal is, of course, to evolve the filtered vidodield to
represent this phenomenon. Thus, an initially thioktex layer (representing the filtered initialest) should be
unstable and evolve to a set of vorticity conceitns, which represent the filtered spirals. Thekeuld also
initially grow exponentially and then saturate, sk&tched by the vorticity contours in Fig. 4. Canapions of a
similar case are described in Section 3.1.3.

However, even if the filtered field evolves exadlycording to the Euler equations, with no numéeceor, it will
have to evolve over a longer time period than thidtered field before exhibiting such vorticitystabilities. Also
in 2-D inviscid, incompressible flow (obeying Eulequations alone), it is well known that vorticity only
convected without changing magnitude. Thus regafriacreased magnitude cannot develop. We condhalethe
filtered field should evolve according to the Eutuations, but with a negative dissipation added will also
cause it to be unstable initially, but that willeenually saturate and not diverge. This extra tehwuld involve an
acceleration of the flow or energizing of the dep#hg vorticity concentrations, leading eventuallya set of
separated vortices. The total energy will thenehaacreased over that of the initial thick, flaesh A possible
approximation, or basis for this model would bet tiwe final energy gain of the filtered field, whi¢s determined



by the initial field and the final vortices, shouiepresent the subgrid, or “latent” energy presaitially. Currently,
we only use this idea as a qualitative guide, baitbeginning to develop more quantitative methods.

The main point is that the VC represents a verypEmvay to add the required energy and, at the dame
eliminate the spreading effects of numerical dessgm.

2. Vorticity Confinement — Basic Concepts

The basic VC concept is related to that of simiteethods also involving thin structures — shock andtact
discontinuity capturing. Accordingly, before debing the VC method, analogous, relevant featureshebe
methods will be briefly described, since they hbheen used extensively for some time and are venjlifa to the
CFD community. Then, basic concepts of the nevhotwk(VC) will be reviewed. These points are knowmpéople
familiar with VC and more conventional discontiyuitapturing methods, but may be helpful to peopletiom it is
new. We will use shock capturing as an example.

Shock capturing methods have, of course, receinegkrtemely large amount of attention in the CFEhownity
and have proven to be extremely important. Thes¢hads typically use only a moderately sized inwvsci
computational grid in the shock region. This isgiole because only thessentiabhysics of the shock (as far as the
flow problem being solved) is retained. By “essainphysics” we mean those features that affecfltive external to
the shock interior. These features include compusteatk thickness, which does not have to be asl smathe
physical thickness but, like the physical thicknesast be small compared to the main length sazlése problem.
They also include the requirement that conservdtas, integrated through the shock, are presentedhis way,
for many problems that do not depend on the detdilhie shock internal structure, accurate flonusohs have
been obtained with specially developed numericAbt& capturing” algorithms. In these methods théaitid,
accurate solution of partial differential equatigipsle)’s (for example, Navier-Stokes equations) tfeg internal
shock structure have been avoided. This has begoriamt since it avoids the requirements of a viamg
computational grid within the structure, and vemye consuming viscous computations there. Thes&sjdehich go
back to Von Neumann and Richtmyer [1], Lax [2] aottiers, involve the concept of “weak solutions”pafe’s
where, in the inviscid limit, discontinuous featsirean be treated. After discretization these idgamild allow
shocks to be approximated over as few as 1-3 gtld.c

The question naturally arises as to whether sinaificient “capturing” treatments of thin vorticidatures are also
possible, which would result in similar benefitsedifference, however, is that with shocks, unliketical regions,
characteristics slope inward toward the shock, wimaturally tends to steepen during a computa#i@ena result,
modeling shocks is simpler than modeling thin \aattistructures and other contact-like discontiesitivhich
naturally tend to spread due to numerical discaétn errors and the need for stabilizing numeritiision. This
results in the requirement that a “steepening’@uorifinement” term be added to prevent artificiakesgling.

The method described in this paper—VC—has been spabifformulated to effectively treat the diffidetio-
compute concentrated vortical regions with the sdmasic philosophy as shock capturing. Although tped
independently, the method, in its one—-dimensionanf has some relation to Harten's “artificial comgsion”
scheme for one-dimensional compressible flow [3pwiver, the VC formulation is much simpler (at tef
incompressible flows). Also, an important featuoe €apturing thin vortical regions is that VC idrinsically
multidimensional and rotationally invariant [3,4).number of recent papers [5-12], mentioned beldegcribe the
use of VC for incompressible flow. Further extensido compressible flow have been recently develdha-16]
but will not be described here, since we want toceatrate on turbulent flow with as few extra coicgdions as
possible. As with shock capturing, it is understdbalt the details of the internal structure of thortical regions
will not be accurately treated, unless special f®dee developed for them. We assume here that thetsils are
not important, other than possibly subgrid scakergy of thin sheets, and that simple capturingelsrsufficient.

As background, we first mention some previous (hB&) examples for which VC alone is effective. Tdes
include convecting vortex rings, which can be cated with no spreading, yet can merge with no meguént for
special logic [7]. They also include thin shed viipgrortices which can be computed over arbitraidiyg distances
[17, 39] and exhibit Crow instability, including mggng [17]. Computations of both of the above pheana show
close agreement with experiment. For trailing e®rtonvection over very long distances (many kilar® the
method can serve as a zeroth order approach igdhes, since turbulence eventually induces a \evy spreading.
This effect can then be simply modeled within thé Wamework, again without using very fine gridshigh order
methods. Examples also include a very simple amcpiensive RANS substitute for attached and separati
boundary layers. This is described below in Sec43and in Refs. [15,18-20].

An important point that should be emphasized is, thhigh Re most vortical regions will be turtntleHence,
any computational method must involve, explicitly onglicitly, a numerical model for the small-scaleusture,



since it is not feasible to directly solve the Nav&tokes equations for this structure. The streotbtained with VC
when a small-scale vortical region or “eddy”, ipttaed can, thus, be thought of as just such a mbdeone that is
very efficient to compute. Further, this modelnginsically discrete, defined over only a fewdygells, and is not
meant to be an accurate solution of a model pde rationale for taking this approach is that dif§icult to resolve
pde’s for a thin vortical structure over long distas, even with higher order methods, if it is adrever only a
small number of grid cells (2-4). This is due te thell-known fact that the accuracy, ander, of a method is only
an asymptoticestimate of the behavior of the error, valid farge N, the number of grid cells across the vdrtica
region. N=2-3 is not sufficient to apply such arimate. Since VC is meant tcapture the feature, and not
accurately solve a model pde, it gets around ttoblpm. Further, many features of the flow extetoahe core, or
interior of a vortical region are not sensitivethe details of the internal structure. For examipl€-D, vortices tend
to evolve to an axially symmetric state [32]. Thtre only requirements for accurately determinimginduced flow
external to the initial core are that the totatualation is conserved, that the vortex centroidehidne correct location,
and that the core does not spread due to numefieats.

As stated VC even involves a negative, though rigerding, total diffusion at certain length scales. Similar
observations about the need for such a negatia¢ dissipation, or eddy viscosity in LES for cemtaégions of the
flow have been made in Refs. [36]. These authemam that in those regions, popular models far dddy
viscosity cannot be used because conventional rnicamhenethods for solving the flow equations woulidetge
there. As a result, the eddy viscosity is oftdnitearily set to zero in those regions. One of itein advantages of
VC is that it allows an overall negative eddy visitp to be implemented - which ultimately saturategher than
diverges.This approach should be much simpler ande ndirect than other approaches used to treattimega
diffusion, or, effectively, energize the small gabrtices, such as “stochastic forcing”.

There are currently other efforts to capture sedlles directly on the grid for use in LES turbakesimulations.
These often involve combinations of one-dimensiamarators, as in original discontinuity captursahemes [3-4,
25] — they are known, appropriately, as “Implicéirge EddySimulation”, or ILES [26]. As opposed to VC, the
emphasis in these is typically not on vorticitysél their main goal is to cancel numerical diffus&s much as
possible [26], whereas for VC it is to specificallgat thin vortical structures with a controlledddel” structure.

2.1 lllustrative One-Dimensional Example

As explained in the last section, the basic conoépftC is that thin vortices are “captured”, likeagks, over only
a few grid cells. This means, of course, thatdiserete equations do not represent an accuratésobf a simple
pde for the internal structure, although they carcbnsidered as approximations to singular (weakitisns. The
goal in these cases (for small scales) is to oobumately treat certain integral quantities, andb& “physical
structure preserving” (i.e., ensure that the voréarains thin).

There is a simple example of this concept in omgedision involving the convection of a passive scala“pulse”
that is concentrated in a small region. A goainttcould be to preserve the total amplitude af salar, to have the
centroid move at the correct convection speed, tanensure that it remains compact—essentially spoyad a
small number of cells. Additional moments of thidse representing additional structure couldesiced, also be
transported using additional fields, but no attermphade at convecting an accurate, point-wiseesgmtation of the
internal structure.

It will be seen that the solution of the “confineetjuations is, effectively, a nonlinesolitary wavethat “lives” on
the lattice indefinitely. The same applies to the 8blutions of convecting vortices, although, ofitse, they cannot
be analyzed in as much detail as this 1-D example.

We then consider a scalap) advecting at a speedhat, in the continuum case, would satisfy the pde

09p=-0,co. (2.1)
Symbolically, we then define a discretized equation
gr=¢ -NMCFH+E", (2.2

whereC is a conventional conservative discrete convectiparator,j denotes spatial grid inder, the timestep
(t = nAt), and E] is a non-linear term designed to keep the pulsepeat.

There are requirements fd]' if the total pulse amplitude and speed are todveserved, independent of the pulse
amplitude:

1. E] must be (at least) a first difference to consetwe total amplitude (which is assumed to vanish
rapidly away from the centroid).



2. E] must be (at least) a second derivative so that) &mestep, the centroid position is not changgd b
E! and, hence, the speed of the centroid is coreagjven by the original pde. Then,
n_ x2rn
El=0/F (2.3)
3. where Jf is a discrete second difference operator &jdis a function ofg and its differences, which

vanishes in the far field.
4. F' must be homogeneous of degree 1ginas the other terms in the equation, so that tiemn

dependence on the amplitude, or scaleof
5. JfFj” must represent a negative diffusion if the putsspread over too large an area, so that it cdatrac

and relaxes to a fixed shape.
6. JfFj” must become a positive diffusion if the pulseois thin, for the same reasons.

Property (4) requires thaﬁjn be non-linear. If it were linear, the negativéfudiion would result in divergence: Any

modes that initially increase in amplitude wouldchtioue to increase and eventually diverge sincg theuld be
uncoupled and would evolve independently.

A simple formulation that satisfies the above reguients is:
occ.
Cy =——— r‘](/r (2.4)
F'=ug — epf (2.5)

where d; is a central differencéy is the grid cell sizep and ¢ are constants, an@? is a harmonic mean:
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There are many other formulations ferthat also can be used. The first termﬁﬁ acts to stabilize the central
difference operato€ and also satisfies conditions (1-3) and (5), dredsecond term satisfies conditions (1-4) and

(6).

The resulting difference equation can be written

g= 4‘?1_%("151 S 1 ¢—1)+ :5( HP- g],n) (2.7)
where Jf is a second difference operator and
v, =c,At/h. (2.8)
Results of a computation (on a periodic — 256 getl) with no Confinement, usingi =.2 and £ =0. after 100

time steps (1/10 pass through the grid) are shown in Fig. 5. ¢@irse, higher order conventional CFD methods
could result in less diffusion than shown here. Eeer, compared to Confinement, these would all iregmore
grid cells within the pulse and, eventually, spréadver even more cells due to accumulated nurakegcror.)
Results are also shown in Figure 5 with Confinenfentl and 100 passes through the grid for.2 and € =.5.

For all of these cases,= ﬁ/G, chosen to be irrational to prevent coincidentedrecancellation.

The exact “sampled” pulse height at any given tateg depends on the centroid position within a geiti almost
as if an approximately fixed pulse shape were “rddwlrough the grid and the values sampled at ¢aoh step.
The pulse, however, remains confined indefinitelycept for a very small effect (after1® time steps) due to the
finite precision of the computer. This impliesttiiaere is an approximate, smooth solution to Equa?.7,¢(x,t),
in terms of a similarity variablez = x - ct. For a range of initial conditions that have fiien of a thin pulseg will

relax to this particular “solitary wave” pulse stdun. This has been shown numerically. Howeveabitity of the
solitary wave and the set of initial conditionstthee attracted to it have not been mathematicitved.



It has been shown [21] that, for a range of valbleg/, & and V , the sign ofg cannot change. Thus for an

initial non-negative pulse, the maximum cannot exicthe sum, which is conserved. This preventsohgion from
diverging.
In the smallAt limit, for constant cg satisfies

57 (ugf - 7)=0. (2.9
A solution is then
¢ = Asech(y(x-x - cf)) (2.10)
whereA andx, depend on initial amplitude and centroid, and

cosh(y) = ?,u - ﬁ/z. (2.12)

It will be shown in Sec. 3.2 that Equations 2.6 &nd, when summed ovey’< j , represent a propagating step

function—like discontinuity, rather than a pulse.eTdummed form then exhibits some similarity to seb® used by
Harten [3], Van Leer [4] and others to capture dimaensional contact discontinuities and shocksomgressible
flow.

3 Vorticity Confinement Methodology

Two formulations of VC have been developed whiclvehaimilar properties: The first, “VC1”, involvesrdt
derivatives of velocity [5, 30], while the secorf#C2” involves second derivatives [21]. Startingffin an initial
condition more spread than the final structure, \&Ctis essentially as an inward convection and esldx the final
structure more quickly than VC2, which acts, idigias a negative, second order diffusion. The wesions will be
described below.

The basic principle in VC, as in the one-dimensiauavecting scalar example described above, istltese is a
solution with a stable structure that can be praped)indefinitely. Although the VC equations canviriiten as a
discretization of a pde (described below), the Itegusolutionat the small scales (within the structure) ismetnt
to be an accurate, or even approximate soluticgheobriginal pde. This is because VC is meant fdwa, or model
the small scale features over only a couple of geits, so that the discretization “error” is Otfi¢re. As explained
in Sec. 1, the features essential for the probleawever, are still preserved. As such, the captigatlire is actually
a non-linearsolitary wavethat “lives” on the grid lattice. (There is currgna large amount of work being done on
intrinsically discrete—odifference as opposed téinite differencegquations, examples can be found in Ref [31]).
In smooth regions (or for large scales), on thesiottand, VC can be made to automatically revedotoventional
CFD where the pde’s are then accurately and effilyi@pproximated.

For thin vortical regions in incompressible flowe wse essentially the same approach as in theiomssional
example above: “Confinement” terms are added toctwventional, discretized momentum equation. Altifowe
use a primitive variable, and not a vorticity, fadation, we will see that if we look at the resudfivorticity
transport equation (for the VC2 version, to be dbsd below), it has the identical “Confinementtrtes as a
multidimensional extension of the one-dimensior@lar transport equation described in Section 2. demeral
unsteady incompressible flows, the governing equatiwith Vorticity Confinement are discretisation the
continuity and momentum equations, with added terms

Mg O (3.1)

0.G=-[0(qe)x (@ %8 €3 (3.2)
where g is the velocity vector,p is the pressurep is the density, angs is a diffusion coefficient that includes
numerical effects due, for example, to discret@anf the first right hand side (convection) ter(We assume that
the Reynolds number is large and that physicausifin is much smaller than the added terms). Fodakt term,
£S, € is a numerical coefficient that, together with, controls the size and time scales of the corngatortical
regions or vortical boundary layers agdis defined below. For this reason, we refer totéhe terms in the brackets
as the “confinement terms”. The vect®is different for the two VC formulations, and isfided below.

Equation 3.2 involves constapt and £, which is sufficient for many problems. If thege aot constant, such as,
for example, when the grid spacing is not constarrhodels are used for them, then these quantiiasbe taken
inside the differential operators in the corresppgderms, to maintain explicit momentum consepsafjin the VC2
formulation).

As in the one-dimensional example ther of confinement terms, which represent spreadingositive diffusion
and “contraction”, or negative diffusion, togetleeate the confined structures. Stable solutiossltrevhen the two



terms are approximately balanced. In this wayremions are made each time step to compensatarfpr
perturbations to the vortical structure causeddiywection in a non-constant external velocity, ditization error in
the convection operator, or the pressure correctidime parametergi and & then essentially determine the

thickness of the resulting vortical structure ane telaxation rate to that state. It should be exsizled that stable,
equilibrium structures result for a wide range alfues of these parameters.

In general, for boundary layers and isolated, coting vortex filaments, computed flow fieldxternalto the
vortical regions are not sensitive to the intestalictures, and hence to the parameterand Ui , over a wide range

of values. For example, a general thin, concerdratartex will physically tend to evolve to an axisyetric
configuration [32].  Further, even a rapidly rotgti non-symmetric configuration will be approximatel
axisymmetric when averaged over a short time [3Bhen, it is well known that the flow outside arisggmetric
two-dimensional vortex core is independent of thetigal distribution, and hence will not depend &nand U as

long as the core is thin (and the filament cunatsrlarge, so that the flow is approximately twmehsional in a
plane normal to the filament). Therefore, the éssinvolved in setting these parameters will beilamto those
involved in setting numerical parameters in othandard computational fluid dynamics schemes, suschrtificial
dissipation in many conventional shock-capturingesges, which, as explained, are closely analodeusher, for
turbulent wake flows, preliminary studies - desedtin Ch. 12, suggest thatcan be used to parameterize finite
Reynolds number effects, since it controls thensity of the smallest resolved vortical scaless(ihithe subject of
current research [22]). This parameter can alsadeel to adjust the confinement level accordingheoagmount of
available sub-grid energy (this is also a subjécuorent research).

An important feature of the Vorticity Confinemengethod is that, for incompressible flow, the Confirent terms
are non-zero only in the vortical regions, sinceéhbihe diffusion term and the “contraction” termnigh outside
those regions. Thus, even if there is a secondrastéropic numerical diffusion associated with ttenvection
operator, and the diffusion operators are only séoorder, outside the vortical regions the resgléecuracy of
these terms can be third or fourth order, sincedkfusion is just the negative curl of the vaitic

A final point concerns the total change inducedh®s/VVC correction in mass, vorticity and momentimegrated
over a cross section of a convecting vortex. Asguee — projection method [34] is used to solvese@rl and 3.2,
so that mass is automatically conserved. Vortisitgxplicitly conserved because of the vanishinghefcorrection
outside the vortical regions. Finally, (in the V&2mulation), momentum is also exactly conservel] [Zcause the
VC terms added to the momentum equations havetelsgarivative operator in front. In the 1-D exdmpescribed
above, this ensures that the pulse centroid cosweith a weighted average of the imposed velodityis should
also be true for a confined vortex convecting iniraposed external velocity field. Then, the vorteatroid will
move with a weighted average of the velocity of ‘theckground” flow, with no effect due to self-incked flow (at
least in 2-D). This has been demonstrated numérig20, 35] (see Section 3.1.2). This is not exasttisfied in the
VC1 formulation, but errors due to the lack of maruen conservation have been shown numerically terball in
most cases (see Sec. 3.1.1).

Many basic numerical methods could be used forespad time discretization. We use a simple firgieotEuler
integration in time and second order in space wath,stated, a pressure — projection method to @nforass
conservation. In conventional CFD schemes highderomethods often must be used, usually to reduoeerical
diffusion and hence attempt to reduce spreadinghiof vortical regions. Vorticity Confinement elinates this
problem for many cases and avoids the boundaryitomadomplexity and computational cost of the laglorder
methods. (It should be mentioned, however, thatsticond confinement, or contraction term involaelarger
difference stencil than the other terms).

Another numerical issue involves the regularitytioé grid. It is important to realize that, since@vecting
vortex or separated boundary layer is capturecttijren the grid, over a few grid cells, large gaspect ratios or
rapidly varying cell sizes should not be used.thdse are avoided, VC will result in a dynamicg tkaclose to
rotationally invariant. These issues also occlircaurse, in shock capturing. Some modificatioas be made,
however, to accommodate non-uniform grids if thegeas ratio is not too large (38, 45, 46).

3.1 Basic Formulation

As explained, the two different formulations, VCOidavC2, have somewhat different dynamics, sincg thter
in the order of the derivative in the contractienmt. The one developed initially (VC1) has beesacdbed in a
number of publications and only a few details Ww#l presented here.



3.1.1 VC1 Formulation
This formulation involves an expression for the ritaction term”, s, that does not explicitly conserve
momentum:

S=hxw. (3.3)
For convecting vortices,
A= iq/‘in (3.4)
where
7=ld-

For boundary layersfi is a unit vector parallel to the local normal. isTterm essentially convects vorticity within
a thin vortical region either along its own gradien along the local normal, from the edge, or eagof lower
magnitude, toward the center, or region of largagnitude. As the structure contracts and the gnadiereases, the
“expansion” term, which is a linear diffusion, ieases until a balance is reached. (This is akmeNvn property of
convection-diffusion phenomena.) Due to the rapitiation of convecting concentrated vortices, amn-n
conservative momentum errors are almost completatgeled and the method has proved to be suffigiaoturate
for many problems.

A technicality in applying this method is often ode®ked by people using it: this was describedanlier papers
[30]. Since vorticity is convected alony, upwind (in A) values ofw should be used in the contraction term to
avoid creating “downwind” values of vorticity withn opposite sign. This is easily accomplished wigtighting
factors at each node that dependfoand unit vectors to neighboring grid nodes.

Most of the VC results presented in the literatuse the VC1 formulation. However, they do not imeolery
slow background flow and do not involve the momenttonservation issue discussed below. An imporairit,
however, is that exact momentum conservation, imesoases, may not be as important as other fegguel as, in
our case, ensuring that a convecting vortex rerair) and should not be regarded as an absolutérezgent (see,
for example, the basic CFD textbook - Tannehilldarson and Pletcher [28], pg. 60).

3.1.2 VC2 Formulation

Only for very accurate long-term trajectory deteration of vortices convecting in a slow backgroweadocity
field has the momentum-conserving VC2 formulatia@em found to be necessary (for incompressible flaw)s
ensures that the contribution of the self-induceldeity to the vortex motion is completely canceled

The VC2 formulation involves

s=0x W'. (3.5)
We can also combine the dissipation and the comiéme into a single term:
LG €5 X (uc:ﬂ ev\F) (3.6)
where
W= q" (3.7)
and
~N _l|:|_l
W= (3.8)
"0 N O
o =laf |+8. (3.9)

Equation 3.6 has some numerical advantages ovdotirejust above it, since the same difference afoeracts on
w and w. Also, the second confinement term (3.8) is thm swer the stencil which consists of the centradeno
(where W is computed) and its neighboring(-1) nodes, andd is a small positive constant-(L0®) to prevent

problems due to finite precision.
When two approximately oppositely directed vortiees close to each other, there can be grid aeleiween in

which W is not well defined, which may cause oscillatiofis. prevent this, if the scalar product of anyluf pther
vorticity vectors in the stencil with the centralde is negativeyV is set to zero.



To see the action of VC2, we take the curl of EiquaB.6. We then get a transport equation for eiyti For

example, in two dimensions,

0,w=-M0(ati} O ?[ e e ( Q] (3.10)
This equation, including the confinement term, Xxaaly a multi-dimensional, rotationally invariagéneralization
of the one-dimensional scalar advection equatianalto be effective in Section 2. Of course, thiaition will still
reflect the four-fold symmetry of the grid. Thisfexft, however, vanishes rapidly away from a vottieggion.
Further, the rotating flow around a vortex coreually allows a simpler discretisation of Eqn.3.t0mpared to an
axisymmetric convecting passive scalar distributibinis is explained in Ref. [21].

Equation 3.8 is a harmonic mean. It is chosen tiglwéhe small values in the stencil more heavilg. i8 well
known, this term vanishes when any of the valuassadrgument vanishes, preventing creation ofeslf opposite
sign (for a range of parameters). Using VC, thalteorticity in a region surrounding a vortex isnserved, since it
is a local term. This means that the vorticity aandiverge due to this term, since the maximum hibsovalue
cannot be greater than the absolute value of suemwah values have the same sign. (This is alsmpepty of the
one-dimensional scalar advection example.)

There are a large number of alternative forms wwatld work as well as the harmonic mean. We belibat the
term should have a smooth algebraic form, howeteegive smooth results. This should be more apjatgifor
multidimensional applications than forms involvilggyic functions, such asrfinmod”, which give good results in
one-dimensional applications. As discussed abaVgrmonic mean term was used by Van Leer [4]lewsiter, but
mostly in one-dimensional compressible flow, amdthe author’'s knowledge, not as a function of iedyt (The
VC1 and VC2 methods were developed independenglynaltidimensional, rotationally invariant “Confiment”
techniques specifically for thin vortical regions).

3.1.3 Examples of VC Results for Convecting Vortice

Computations were done on a 128x128 uniform Camegirid for two vortices of the same strength fogat
around each other in 2-D. Results of vorticity coms are presented in Fig. 6 for a sequence odp'simots” [12]. In
Fig. 6a, no confinement was used. The large dissipaf the low order convection numerical methedapparent:
In Figs. 6b and 6¢, VC2 was used. The thin whitediacross the cores represent grid lines. ThiyatilVC2 to
maintain very compact vortices, even after 20 dubits around each other, is apparent. VC1 shoasngiglly the
same behavior but exhibits some “drifting” overdgueriods, as expected. It should be emphasizédhbse results
were obtained without resorting to high order mdth¢which would have been futile on the coarse)grid

As another example, computations were done on 48¥8 uniform Cartesian grid for two interactingitially
coplanar vortex rings in 3-D, using VC1 [7]. A vioity isosurface is shown in Fig. 7, for a sequeatémes. The
cores can be seen to be confined to about 2 glid. da this case, the vortices merge and re-lwith no
requirement for special logic. The vorticity isdswes from an experiment of the same flow [48],vahin Fig. 8,
can be seen to compare very favorably. As abov, low order numerical methods were used. The dséGP
results in slightly larger (but still constant) eaizes, and essentially the same behavior.

One other illustrative example involves the Kelideimholtz instability described in Section 1.1. sénple flow
was computed where initially, a 2-D stadium shaphbth vortex sheet with zero velocity inside. Thisuld be
expected to roll up, in the zero thickness limitpispirals. The evolution of the filtered fieldasvcomputed, using
VC1 on a 128x128 grid. The initial vorticity conts are shown in Figure 9. As expected, the flegdmes
unstable, but soon saturates into concentrateécgsrtas shown in Figure 10.

3.1.4 Boundary Layer Models

This section does not directly involve LES. Howewbe turbulent wakes described in Ref. [0], arége from
boundary layers (BLs) separating from blunt bodk&s. this reason, we describe the general use ofovCreating
implicit models for these BLs. Here, VC providesay simple, low-cost substitute for RANS modelawéver, it
should have comparable accuracy for these apmitatisince the BL treatment is consistent with\etreatment
of the vortices in the wake. We describe two apgiea: the use with immersed BL's, and the use wiitffiace —
conforming grids. Both enforce the necessary ne-tlarough conditions. They also enforce no-slipdibans. This
latter feature ensures that the resulting BL hascibrrect total vorticity, which is just the difearce between the
velocity at the outer edge of the BL and the invedpcity, which is zero. This, in turn, ensurestthaeparating BL
has the correct total vorticity. Since VC also easithat a separating BL will subsequently remiim ¢but can still
roll-up or lead to large-scale separation), théatment should be accurate, since when the sapagiti is thin, the
details of the internal structure should not hameiraportant influence. Both of these approacheslires coarse,
inviscid-size grids. These models do not involvéedaining a detailed time-averaged velocity profds in RANS
schemes, which would require a very fine, bodditgrid: Instead, they models the profile over amlfew coarse



grid cells. As such, they are meant to be usefulbfant body flows with massive separation, where internal
structure of this profile, as well as skin frictiaare of secondary importance compared to theitmtand strength of
the separating BL.

With a conventional CFD solution without VC, eveaar fattached flow, the BL vorticity would quickly weect
and diffuse away from the surface regions due @éddhge numerical errors at the boundary resuftiogn the coarse
and possibly non-conforming grid, destroying theusacy of the outer solution. However, the use &f d6nfines
vorticity to 1-3 grid cells along the surface, whiems attached. Just outside this layer the \iglas smooth and
close to tangent to the adjacent surface [49]. iMportant feature here is that an attached BL, eviéim constant

confinement parameters, maintains a constant tagknThis is close to the very slow thickness gno@xﬂ”) of
physical turbulent BLs in constant pressure gradi¢on flat plates). This simple boundary layer stilh separate,
however, especially at edges and in regions ohgtemlverse pressure gradient.

The VC1 version has a very simple interpretation dtiached boundary layers: In this case, the vefitan
Equation 3.4, as explained, is defined to be Igaatirmal to the surface in the boundary layer negithen, VC1 is
simply a combination of positive diffusion (whicpreads the vorticity away from the surface) andveetion of
vorticity towards the surface. This has proveneaabvery robust and efficient way of modeling tloeifdary layer,
combining a tangential smoothing for the externalowity and a "compression” of the vorticity in thm@rmal
direction.

A number of results have been presented which dstrada the effectiveness of this approach [20-BBfases
where the BL separates, it can be seen to remairb#dtause of VC. Other immersed surface methogareptly
result in numerical diffusion and numerical thickenof the separating BL'’s [47].

a. Immersed boundary layer model

To enforce no-slip boundary conditions on immersedaces, first, the surface is represented inyliby a smooth
“level set” function, F”, defined at each grid point. This is just thegsd) distance from each grid point to the
nearest point on the surface of an object — pesitiutside, negative inside. Then, at each time dtepng the
solution, velocities in the interior are simply detzero. In a computation using VC, this resuttshin vortical
region along the surface, which is smooth in timgéatial direction, with no “staircase” effects.

The important point is that no special logic isuieed in the “cut” cells, unlike many conventiorsghemes: only the
same VC equations are applied, as in the restefgtid, but with a different form fon. Also, unlike many
conventional immersed surface schemes, which arscid because of cell size constraints, therdfecvely a no-
slip boundary condition, which results in a boundiyer with well-defined total vorticity and whiclhecause of
VC, remains thin, even after separation.

The method is especially effective for complex égunfations with separation from sharp corners. oAksven with
constant coefficients, it can approximately tregiagation from smooth surfaces, as shown in Rgf. [0

Results (tangential velocity contours) are preskimeFigs. 11 and 12, for a computation on a unifdartesian
with 128x128 cells, for flow over an immersed, qhbk flat plate in zero pressure gradient. The tiagularge,
diffusive numerical errors can be seen in Fig.fad the case with no VC. For this flow, the velgds simply set to
zero at nodes below the surface. (The small wiggte from the spline fit in the contour plottdt.gan be seen that
these are eliminated, to plottable accuracy, ferdhise with VC1, plotted in Fig. 12. Here, as in.$e1.3, only low
order numerical methods were used with constarfireement coefficients.

b. Conforming grid boundary layer model

We are beginning to develop detailed models fobulent boundary layers, within the VC framework.isTh
involves modeling the evolution of the Confinemgrarameters so that, for example, separation israitety
predicted, even on smooth surfaces in time-depérathrerse pressure gradients. Results of some exglgratory
studies for these cases will also be describedein [R]. There is still research to be done ors¢hmodels, but the
capabilities of the basic approach appear to bg wemising.

An important point, is that this VC-based methoduisdamentally different from conventional RANS sntes,
which typically use an eddy viscosity (EV) typetefm and discretise a (modified) Navier-Stokes tgpequation
on a very fine grid, in order to model the time+aged velocity. A very important feature of VC &ds that it
greatly expands our modeling capability, compae&V — type schemes: Typically, these latter sclseoan only
accommodate positive values of EV. If the EV isateg over significant regions of space and tirheyttend to
diverge due to numerical instability [36]. This meahat the modeled BL can only directly be madexpand, or
diffuse, and not to contract. (Of course, slowgramsion rates can be obtained and smaller BL teakrbut a finer
grid is then required and a smaller value of the)BXC, on the other hand, can directly model caitom, and,



unlike a conventional scheme with a negative eddgosity, VC will not diverge. This is very useftibr example,
in turbulent BL separation from a smooth surfacenatderate values of Re: physically, the separdtiggr then
tends to transition and quickly reattach. A cortoacterm such as VC easily models this effect [37]

Another point is that, for conforming grids withniable cell sizes, a scaling factor must be appied: and

which depends on this size [38]. This is not @dacorrection, since inviscid-size grids are used to not have
large aspect ratios.

A final point involves the use of VC in retardingpgration in adverse pressure gradient regionseXxample, as
is well known, a turbulent BL tends to separaterldin an adverse pressure gradient) than a lansinar VC can
easily be used to simulate this by increasing thrdicement strength, again without very fine gri@€)]

3.2 Comparison of the VC2 Formulation with Directian-Split Discontinuity Steepening Schemes

In this section, we describe advantages of VC daiection-split discontinuity steepening schemes ¥st
reformulate the one-dimensional scalar pulse eguadf section 2. as a steepening method for velamintact
discontinuities. The result has some similarityfdoms that have been developed over a number of yteakeep
gradient steep and overcome the smoothing resutimg the convection terms. As explained abovesdrechemes
have typically involved one-dimensional compressitibws and have a number of essential differencespared
to VC.

If we consider the integral of the one-dimensignalke of section 2. (and change the sign), we hawepagating
step function that remains steep for arbitrarilygdimes (see Figure 13). Making the substitution:

o=V =V -V (3.10)
Egn. (2.6) becomes
o' =o' ({5v}) (3.11)
Partially summing Equation (2.7) oviewe then have (for constar)t
n+l _ n V n n n n
VIV =2 (M - VL) g7y -ed @ (312)

In this form Confinement is, effectively, a one-éinsional steepening scheme. However, real flowsrrgave a
single region in which they have a steep gradiamd, exactly constant properties everywhere elsggeheral, there
are O(1) (smooth) gradients away from the discaitrregion. In 1-D, these smooth gradients ase alcted on by
the steepener, causing errors, unless specialipgied to cut-off the steepener.

Using such one-dimensional schemes along each icatedaxis to keep a convecting vortex core compsct
maintaining the steep gradients there would calisesame problem, since the velocities vary inveragdh the
radius away from the core (see Figure 14). Howewerdo not do this! The important point is tha should not
use the exact one-dimensional Confinement termsshmuld only keep their basic mathematical stmactuthat they
are functions of first derivatives of velocities. developing a formulation for multiple dimensiomg& should then
use only rotationally invariant quantities. Thdyoguantities, for example in 2-D incompressiblevf] which are
first derivatives of a velocity are:

w=0 g| (3.15)

and
D =g (3.16)
where k denotes the out-of-plane direction. But 0 for incompressible flow, so we have only one choic
P =0(w). (3.17)

This eliminates any problems with gradients awaynfrthe core since just outside the cose 0, even though
both d,v and o ,u are O(1) there. In addition, this choice resiita much simpler formulation than using separate
operators along each axis. Finally, for a voritanfent in three-dimensions, we consider it suffitito confine in a

two-dimensional plane normal to the vortex, as ckepi in Figure 15. In this way we arrive at thenmeotum
conserving VC formulation.

4 Conclusions

A computational method is described that has bessigded to capture thin vortical regions in highyfeéds
number incompressible flows. The principal objeetof the method—Vorticity Confinement (VC)—is to cangt
the essentiafeatures of these small-scale vortical structares model them with a very efficient difference hoat



directly on an Eulerian computational grid. Effectivelye temall vortical scales are treatedraslinear solitary
wavesthat “live’ on the lattice indefinitely. The metti@llows isolated, convecting structures to be reatiever as
few as 2 grid cells with no numerical spreadindheey convect over arbitrarily long distances, withspecial logic
required for merging or reconnection. It also seras a very efficient substitute for RANS modelsatfched and
separating boundary layers and vortex sheets $aments. Further, the method easily allows bouedanith no-
slip conditions to be treated as “immersed” susaire uniform, non-conforming grids, with no requirents for
complex logic involving “cut” cells.

In this paper, a description of the basic VC metisogiven. This is more comprehensive than has peeviously
available. There are close analogies between VC vamittknown shock and contact discontinuity captgri
methodologies. These are discussed to explain #is&c hdeas behind VC, since it is somewhat differtan
conventional CFD methods. Some of the possilslitiat VC offers towards very efficient computat@frturbulent
flows in LES approximations are also explored. Ehetem from the ability of VC to act as a negatliasipation at
scales just above a grid cell, but that saturatdsdaes not lead to divergence. This feature allows

1- approximate cancellation of numerical diffusi@o, that more complex, high order-low dissipatichesnes
can be avoided. Small-scale vortical structurethatgrid cell level can then be captured, resultimgery
efficient use of the available degrees of freedonthe grid.

2- approximate treatment of backscatter. This weslthe addition of (modeled) subgrid kinetic egexy the
flow in a natural way, without requiring stochadticcing, and which restores some of the instaédithat are
removed by the (implicit) filtering.

Although used for a number of years for completacited and separating flows, and trailing vortidssyse as an
LES method is relatively recent.
In Ref. [0], results of initial applications of VI6 LES will be presented.
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Figure 8. Coplanar Vortex Rings — Experiment (R48])



Figure 10. Vorticity Contours Showing Instabilapd Formation of Concentrated Vortices
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Computation of High Reynolds Number Flows Using
Vorticity Confinement: Il. Results

John Steinhoff Nicholas LynA, Wenren Yonght) Meng Fah, Lesong Wan§ and Bill Diet?

1 Introduction

In Ref. [0], as explained in the abstract, a cormpomal method is described that has been desigmedpture thin
vortical regions in high Reynolds number incompitdesflows. In that paper a description of theibagC method was
given.

The important point is that VC, even in its simpleserothorder” form with constant coefficients, on a ce&agsid, can
capture most of the main features of high Reynaldsber flows. This is mainly because VC invohiesaddition to a
positive eddy-type viscosity, riegativeone that does not diverge, but automatically séésc This allows a much simpler
turbulence modeling approach. Further, argumegmessénted in Ref. [0]) show that just such a negatiscosity should
be required: Even witho numerical dissipation issues, to accurately siteudgfiltered field, in certain regions of the flow
a term should be added to the Euler equationsatitatlike such a negative dissipation with satarati

In Ref. [0] two VC formulations were described: V@hd VC2, which involve first and second order dhives,
respectively. VC1 converges more rapidly. Themifference is that VC1 closely conserves momentwiile VC2
explicitly conserves it, making the latter more @ate for computations of vortex trajectories ol distances. In this
paper, some sample results are presented fromtrem@putations for both formulations.

We feel that for turbulent flows, computed surfgcessures or mean velocities are not sufficierdescribe the flow:
The entire field should have vortical scales thrat small enough to allow reasonable resolutionr this reason, and to
get an understanding of the basic features of VE,pnesent visualizations of the vorticity in theldi for several
computations.

Of course, detailed plots of pressure or velocity presented for a number of cases. However,eifghalitative
properties of the main flow field are not correeg, feel that the validation is not complete.

2 Results

2.1 Ellipsoid

Flow over a blunt body is of considerable intefieSEFD, as these flows are characterized by lacgéesseparation that
is difficult and costly to simulate using convemi@ CFD methods. The Vorticity Confinement meth@dC1
formulation) was used to compute the flow over & élipsoid for several angles of attack. Fig. dpidts the body
embedded in a coarse uniform Cartesian gt8Bk 70x 100). The length of the ellipsoid was 120 cells amel diameter
20 cells.

The configuration was also run with a conventianabmpressible finite-volume Navier-Stokes flow\aal (with a ke
turbulence model) using body-fitted structured griRef. [1]). Comparisons between the Vorticitynleement results,
experiment, and the conventional flow solver (deatgd as F-V) for 20 degrees and 25 degrees afigittatk are
reproduced in Fig. 2. At these high angles ofchftahe flow is characterized by large-scale sdmaraand the
development of steady vortical structures on tleediele of the configuration. In both cases, thetidity Confinement
results agree well with experiment and the F-V cotafion. Use of non-body-conforming Cartesian gediminates any
difficulties with grid generation, and the use obrticity Confinement allows results to be obtainmad much coarser
meshes than is possible with conventional Navieké&t grids. The Vorticity Confinement calculatioesjuired about 5
hours on a Pentium II-class computer.

An important point is that these comparisons ingoburface pressure, for which the body-fitted gvsk optimized.
Unlike the conventional method, the VC method ditl Inse resolution in the wake, since it used &oum Cartesian grid.
Resolving the wake is often an important goal impating these flows (such as for submarines).
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2.2 Jet Pulme

A jet plume was computed issuing from a flat plabhen angle of 30 degrees. There was no crosswelodity. Two
cases were computed, one without Vorticity Confisetnand another with the VC1 formulation. In tase without VC,
shown in Figure 3, the smallest scales quicklyipiige. VC resolves the smaller structures orctmputational grid, as
seen in Figure 4. The computational grid W29x 65x 6%, and the computational time was less than 30 minfdr 300
time steps, for a 1.8 GHz Pentium processor wiBlof memory.

2.3 Forced Turbulence

Computations for 3-D randomly stirred turbulenceevdone using the VC1 formulation. A coarse, umifdCartesian
grid of the dimension$4x 64x 64was used with periodic boundary conditions. The @Ember for the computation was
0.2.

Forcing was added every time step for the firsttteusand time steps:

U, = A, -0,
0, = A[o,s -0,9]
0, =AH @ -0,

whereA is a constant, angy , @ andg,are potential functions with the following express:
@ = a,sin[ 271X/ L, + q] sing2ry/ L, + off sif 217/ L, + a
@ = Bsin[2mx/L, + 4 sing2ny/L, + A sif 2/ L+ §.
@ = psin[2mx/L, + ] sinB2 /L, + Bsif 27/ L+ }
Here,a,, a,, a,, a3, B,, B, B,andB,are random numbers generated every time stepandy are coordinates, and

L., L,andL,are the overall lengths of the computational gimdsach direction as denoted by the subscripts.

The results presented include the compensated\espegtrum at several times and the isosurfacheo¥orticity field
at one time. Fig. 5 shows the compensated energgtrsin of the fully developed turbulence, and thectrum after
turning the forcing off for a sufficiently long ged until the turbulence fully decays. The enespectrum is plotted
using a log scale in both the wavenumber and en@@ndE, respectively) axis, and the energy was multipbgd< >,
so that the spectrum curve should appear flat doupto the Kolmogorov theorem.  For referenbe, spectrum of the
forcing function after one single time step wa® giotted in the figure. Fig. 6 shows the vortiagosurface for the fully
developed turbulence field at time step 8,000.

2.4 Circular Cylinder

The computation of flow around a circular cylinders been done using both the VC1 and VC2 formulatidn both
cases,Re = 390(. A coarse, uniform Cartesian grid1x 121x 6. was used with an immersed boundary for the cyfinde
that was only 15 cells in diameter. The resulsspnted here are from the VC2 study, although tG& f6rmulation
shows no significant difference (results for the IV€@rmulation can be found in Ref. [2]). Both VG@riulations
compared very well with each other and with expenin

Results for the VC2 formulation are presented beMuarticity magnitude isosurfaces are shown in Figwhere the
isosurface magnitude has a value of ¥4 of the maxim®Plots corresponding to computed average strésamwvelocity
along lines behind the cylinder are shown in Figin8 rms streamwise velocity fluctuations are preskin Fig. 9. The
lines where the measurements were taken are showig.i 10. Good agreement with experiment is seEime pressure
distribution on the cylinder surface also compasy well with experiment data, as can be seengnH.

The important point here is that only by adjustimge parameter, which was constant throughout the field, the
computed results agreed closely with experimentafbsix curves plotted in Figs. 8 and 9. Additibnamparisons with
experiment at different Reynolds number will beuieed to calibrate the Reynolds number dependehttésoparameter.

It must be emphasized that the instabilities amabtib behavior that result when is increased are only from three-
dimensional effects, as in physical turbulence, arednot due to numerical instabilities: Extenstgdies have been done
over a much wider range af values than that studied here for flows in 2-Dewhno instabilities were expected. These
only showed stable flow. These studies involvedizes shedding from a two-dimensional cylindertwgiairing. Other
studies involved isolated, shed wing-tip vorticeshiree-dimensions.

2.5 Square Cylinder

Flow over a square cylinder was also calculated.irAthe circular case, the cylinder was “immersad’a uniform
141x 101x 6. Cartesian grid and periodic conditions were imposethe lateral boundaries. The diameter (len§#ach
side) of the cylinder was also 15 grid cells. Thms coordinate system was used as for the circylider. As shown in
Figure 12, results of the computations were comptyehe experimental results of Lyn, et al. [ShaReynolds number of
about 21,400. The computational results were atayed over the spanwise direction.



As in the circular case, the diffusion coefficient, p, and the confinement coefficient, €, were held constant throughout the
field. The confinement coefficient, €, was adjusted to impose different levels of confinement so as to approximate the
effects of different Reynolds numbers. Figure 1ids the comparison with experimental data of tihee-averaged
streamwise velocity along a streamwise line extemdiownstream from the middle of the leeward fatcéhe cylinder.
Results for one value of the confinement coefficiare plotted. Figure 14 shows the time-averagéakitg along a line
normal to the cylinder axis and the mean stream=afl. Symbols represent the experimental datee fMitimerical results
can be seen to agree well with the experimenta. d@mparisons of the computed streamwise RMSitglhuctuations
with the experimental results also show good agesein Fig. 15.

2.6 Disk

Computations were done onl@&5x 101x 10uniform Cartesian grid. The disk diameter and idere 30 and 1 grid
cells, respectively. The CFL number was set etuél.25. The entire computation took about 52 &aur a single 933
MHz Pentium 3 processor for a nondimensional tifhever 90.

The computed wake was visualized by vorticity istezes of roughly 25% of maximum. These are shéovrsix
nondimensional times, T = 2.5, 5, 10, 20, 40 andi®®ig 16. It can be seen that the flow resultethstabilities and
streamwise vorticity. This is very close to vismations from wind tunnel experiments as shownigsF2 and 3(a) of
Ref. [4]. For comparison, vorticity isosurfacesrfr a computation using a conventional differendes®e are shown in
Fig. 2 of Ref. [5]. The large unphysical effecfsnamerical diffusion are evident there. Thesehysital effects also
occur in our code when we turn off confinement.

The drag coefficient history for the entire compiataal time is shown in Fig. 17. This is very cloagreement to
available experimental data (Fig. 4 of Ref. [6f)dather computational results (Fig. 20 of Ref [6])

2.7 Dynamic Stall — NACA 0015

The “TURNS” code was modified to include Vorticitonfinement. This code is compressible, but thetibity
Confinement was implemented in a similar way asidiesd in Ref. [0] (see Ref. [7] for more detailsHowever, the
results presented here are for a Mach number &.8h)at compressibility effects are small. Thepatational grid cell
sizes were close to those in typical inviscid cotapans, even though the results are for a highnBlelg number viscous
case (see Fig. 18). Traditional RANS schemes woedgiire 2-3 orders of magnitude smaller cells ribarsurface and
corresponding longer computing times. Vorticitynfioement (VC1) allows the no-slip condition to batisfied, such
that the boundary layer remains attached untildhwect separation point. The computation requaly 6,500 grid
cells.

Figure 19 depicts lift and moment loops for the NMOD15 airfoil (11° < a < 199, reduced frequency.f M = 0.3).
The stall-induced moment is only moderately latthan experiment (compared to conventional CFD nughoThe lift is
fairly well predicted with the exception of a smedigion during the early downswing. The predictegiments for this
case are fairly close to the data, with the exoeptiof somewhat underpredicting the moment peakfandccurrence of
another peak in the early downswing. The compugaty elownswing is marked (for this case) by theuwtence of a
second vortex eruption - which is not apparenhadata.

A higher reduced frequency is shown in Figure 20 {f3° < a < 21°, reduced frequency = 0.13, M 3.0rBthis case, it
appears that the actual flow is always at leastigilgr separated (to judge by the lift differenoees on the upswing).
However, the moment comparison is not unreason&talethis case, the moment peak is somewhat owdigiee. The
accuracy of the comparisons seen in Figures 1928nd close to what is required for an engineenmglel—especially
considering the computation time, which is of thées of a minute on a PC for a single cycle.

2.8 Comanche

The flow about a realistic helicopter body (Comagjclivas computed. Rotating shanks were includedhé
computation since they could have a significareafbn the flow behind the pylon. However, theohation of the shank
geometry should be consistent with that of theiwest which they shed, which are spread over onbuga# grid cells.
Accordingly, a simple analytic representation waedi for the shanks (as opposed to the main bodichwivas
represented by surface points). The shank and Hefiyitions were then used to compute the geometsfining level
set function for the flow computation (see Ref)]0]

A simple uniform Cartesian grid was used in the potation which had 288x64x128 in the streamwiseizbatal and
vertical directions, respectively. Figure 21 shdhes pressure distribution on the body surfacenattone. It can be seen
in Figure 22 that strong concentrated vorticitgli®d form the pylon. This will cause strong presgluctuations on the
tail, which is seen in the experiment. In factS-per-revolution oscillating pressure was computeat corresponded
closely to flight test data. Although only 3 rewtibns were computed and more are required to efbstatistics, good
agreement in the comparison of power spectra ceseer in Figure 24. This computation was preforoe@ PC (Intel
Pentium Il, 266 MHz, 256 MB RAM) and required 6 h®yper revolution. These Comanche results wetiligishown
in Ref. [8]. The flight test power spectra in Higw24 are also shown in Ref. [9]. (The power gpectresults were
computed by Ted Meadowcraft of Boeing, Philadelphia



2.9 Missile

Computations have been performed around an unpdweissile. Vorticity Confinement was implementesl a
subroutine in the “OVERFLOW-2” code. Since thigrgautation was supersonic, a different version oR\(@escribed in
Ref. [10]) was used. Vorticity Confinement is udextause it can capture the essential featurém afeparating boundary
layer—maintaining its small thickness and correctuation. Further, Vorticity Confinement allowsarse inviscid-
sized grids (yet still maintains the no-slip coiatitat the surface) and can convect the separaites downsteam in a
computationally efficient manner. The only othecarate alternative is the much more expensive RAp&oach, since
conventional, economical inviscid approaches leaddccurate boundary layers and expansion fans.

Normal forces and pitching moment versus anglettaick are shown in Figures 25 and 26 for a Machbamof 1.2.
For a non-symmetric (three-fin) configuration,stexpected that the force and moment curves withdiesymmetric, as
the proximity of the side fins to vortices shednirthe body depends on the angle of attack. Veryg gapeement is found
between the Vorticity Confinement computation ardeziment. The physical asymmetries apparent ireperiment are
replicated in the computation for both normal foarel moment. Results at higher Mach numbers anersin Ref. [10].

Figure 27 depicts the missile at high angle ofcitta supersonic (M=1.2) flow. Missiles at highgsn of attack are
characterized by two main types of vortical stroesu a vortex pair generated near the nose of thsile) and vortical
structures generated on lifting surfaces suchres fPhysically, these structures may interactraache while convecting
downstream and have a profound impact on any dogarstbody. To demonstrate the need for Vorticiopfhement,
cases were run with and without confinement for parison. Without Vorticity Confinement, the voseg dissipate
almost immediately and persist only slightly doweam of the missile tail, as seen in Figure 27 g@yure 27 (b) depicts
the isosurfaces when confinement is applied. Wilticity Confinement, the vortices persist almostefinitely, and are
free to interact with each other and any downstrebjact in a physically consistent manner. Theabijty to model the
wake vortices can be critical for multiple configtions. Without confinement, the resolution of ke vortices would
require dense grids and a large number of gridtpowmith attendant large computational resourckscan be seen that
Vorticity Confinement provides a means of captutingse structures without resorting to fine meshes.

2.10 Other Studies

The three cases presented above demonstrate ug€sfof simulating selected phenomena. Out ofitihge number of
results obtained in the last several years, twoitiadd! results should be mentioned because theyracent and
demonstrate additional uses of VC—vortex propaga#ind interaction with an airfoil (blade vortex irgetion) and
simulation and visualization of turbulent flow (fospecial effects). Some recent results can be saen
http://www.flowanalysis.com.

2.10.1 Blade Vortex Interaction (BVI)

The ability of VC to economically simulate propagatof concentrated vortices for BVI has made puesa recent
parametric study of two-dimensional BVI cases [12]. This study also utilized a compressible \@arsof Vorticity
Confinement. In these papers, it is also dematestrthat there is excellent agreement between dahgatations and
experiment.

2.10.2 Turbulent Flow Simulations for Special Bffec

For special effects, the important aspect of aulert simulation is, of course, that it look turdod, which means that it
include visible small scale effects. Of coursethiy itself, is not sufficient for engineering pases, but can be thought
of as a prerequisite, especially if small scalenpingena are important in the problem. VC1 has Beend to simulate
small scale phenomena more effectively and ecordlyithan other schemes. Ron Fedkiw has performeaztllent
computations and visualizations with this as a §ba].

3 Conclusion

The Vorticity Confinement (VC) method has been pnted in more comprehensive detail (in Ref. [Ofntihas been
previously available. Although the basic ideas sommewhat different than conventional CFD, thersoime commonality
with a number of well-known computational methodsch as shock-capturing. Extensive use of analogitis these
methods is made to explain the basic motivation.

The main goal of VC is to efficiently compute coeplhigh Reynolds number incompressible flows, idirig blunt
bodies with extensive separation and shed vortaménts that convect over long distances. Almdsbfathe vortical
regions in these flows are turbulent. This mehas, for any feasible computation, they must be etextl The remainder
of the flows is irrotational and is defined once trortical distributions are. Further, these vaitiegions are often very
thin.

For these reasons, the basic approach of VC idfitheatly model these regions. The most efficievdy to do this
appears to be to develop model equatidinectly on the computational grid, rather than to firsvelep model partial
differential equations (pde’s) and then attempdourately discretize them in these very thin negiio

These goals are easily achieved in the large numbdéows where the essential features of the nilw are not
sensitive to the internal structure of thin vortigegions. Then, VC can easily be used to captasd regions over only a



couple of grid cells and propagate them, esseptil nonlinear solitary waves that “live” on thenqmutational lattice.
Flows with these features, that are treatable thithpresent state of VC, include blunt bodies s#éparation from edges
and other well-defined locations. These configorai include complex geometries that can be easgifynérsed” in
uniform Cartesian grids using VC. These flows alsdude vortex filaments which can convect, with numerical
spreading, even over arbitrarily long times, andctvitan merge automatically with no requirement $pecial logic.
Flows that involve separation from smooth surfaeasl which depend on the turbulent state of thentarty layer, require
more detailed modeling, including parameter catibra This is an area of current investigation.

By contrast, a large amount of effort has been edeé over a number of years by a large number dfeve to develop
and calibrate turbulent pde-based models for caioeal eddy viscosity-based CFD schemes, such adSRand LES.
These schemes can be quite complex and can raguiydine grids. The important point is that V@ega in its simplest
“zerothorder” form with constant coefficients, on a ceaggid, can capture most of the main features gif fiReynolds
number flows. This is mainly because VC invohasaddition to a positive eddy-type viscositynegativeone that does
not diverge, but automatically saturates. Thisvedl a much simpler turbulence modeling approachrthEr, arguments
(presented in Ref. [0]) show that just such a rniegatiscosity should be required: Even witbh numerical dissipation
issues, to accurately simulate a filtered fieldcémtain regions of the flow a term should be adiethe Euler equations
that acts like such a negative dissipation withirsdion.

Preliminary results, some of which are presentadgsst that very large computer savings can beeaetij even with
the simplest form of VC.
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5 Figures

Figure 1. Ellipsoid Embedded in Uniform Grid
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Figure 3. Jet Plume Without Vorticity Confinement

Figure 4. Jet Plume With Vorticity Confinement

10"

op
(=4

107 ?

4 49 9 d44Ad499494q
10° 1 %

. PR T 14
10°F ¢

10"+ .
L d Forcing for one timestep
[} Forcing on n= 4000
iy Forcing on n= 6000

-13 N _

107 =] Forcing on n= 8000

< Forcing off n = 18000
b Note: foreing turning off at n= 10000
10-15 I | RN SN N

Figure 5. Compensated Energy Spectrum

10 20 30



]

3l

-~ v
o

K
‘%‘

a

.
o

o
’

60

Vo )
.%_

[\
al

40

s

X W o« Yy ol g T
’ .’
i -

a®

«
Ll

‘oLl \ YaN

A

0

X 0

Figure 6. Vorticity Isosurface at 800Timestep

Figure 7. Vorticity Isosurface for Flow over Cyliedwith Vorticity Confinement f = 0.15,£ = 0.32f)
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Figure 8. Mean Streamwise Velocity Profiles. Syiatave Experimental Datg(= 0.15,£ = 0.32f)
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Figure 9. Streamwise Reynolds stresses. SymbelExerimental Datayf = 0.15, = 0.32%)

Figure 10. Measurement Positions
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Figure 11. Time-averaged Pressure Coefficient iDistion on the Cylinder Surface. Circles Denote &xpental Data of
Norberg ([14], 1987)
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Figure 13. Comparison of time-averaged streamwésecity along a streamwise line. Symbols denofgedarmental data.
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Figure 14. Comparison of time-averaged velocityfifg® at x = 1. Symbols are experimental data.
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Figure 17. Coefficient of Drag History



Figure 18. NACA 0015 Computational Grid
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Figure 19. Hysteresis Behavior for NACA0015 Aitfétrequency = 0.1
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Figure 20. Hysteresis Behavior for NACA0015 Aitféirequency = 0.13
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Figure 21. Interpolated surface pressure on thfaceiof the Comanche fuselage with rotating shanks

Figure 22. Computed Vorticity Isosurfaces for trmn@nche Fuselage with Rotating Shanks
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Figure 24. Comparison Between Computation anchEligst of Power Spectrum of Pressure Fluctuagoisil
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Figure 25. Pitching Moment for a Missile at M=1.2
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Figure 27. Isosurfaces of Vorticity Magnitude #éoMissile Wake (M=1.2)



